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Abstract 

Mathematical modeling of intracellular processes is an actively developing field of study. 

Different scientific groups use various approaches and principles for the modeling of all range 

of processes, from single biochemical reactions to cellular metabolism. Each of the 

approaches used has its advantages and disadvantages and requires different input. This article 

includes the review and analysis of the modern works in the field. The main approaches to the 

modeling of intracellular processes are discussed, including flux balance analysis, Petri nets, 

thermodynamics approaches for systems far from equilibrium, “black-box” modeling etc. 

Also the article involves the analysis of approaches to the structures of mathematical models, 

organization of links between sub-models and the possibilities of use of various methods 

while modeling a single metabolic process or a metabolism of a certain microorganism. 
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Introduction 

Representation of intracellular processes as mathematical models allows researching in 

silico and using the results as a base for planning further experimental work. Mathematical 

models are expected to become very helpful in detection of functions of almost every gene in 

cell and in the long term will make a significant contribution in general picture of processes in 

biological systems [1]. 

Nowadays the modeling of metabolic fluxes became the object of greatest interest [2, 3]. 

First approaches to this kind of simulation formed in early 90s of last century [4, 5] and today 

are widespread. This type of simulation is known as Flux Balance Analysis (FBA).  

                                                        
E-mail address: gotovtsevpm@gmail.com (Corresponding author). 



www.manaraa.com

P. M. Gotovtsev, Ya. E. Sergeeva, A. V. Komova et al. 104 

Such models give an idea of the material balance of intracellular processes in stationary 

conditions and in case of a complete model they allow to predict phenotype on the basis of 

genotype [3]. 

One of the most important aspects of simulation process is to respect the order of the 

reactions in a simulated metabolic pathway. At the same time it is necessary to count properly 

the changes in amount of substance in each of the reactions. Such control should help, for 

example, in identifying the limiting reaction in metabolic pathway. Currently there are 

various approaches in solving this problem: using different types of algorithmization, using 

mathematical apparatus, graph algorithms, in particular Petri nets [6–8]. 

In general today mathematical simulation of intracellular processes is actively developing 

branch, which can be very useful both for scientific research and for solving practical biotech 

problems. Below we will examine some approaches to simulation which are applied 

nowadays.  

Analysis of Metabolic Fluxes 

Today the most widespread method of modeling is a method of analysis of metabolic 

fluxes. It gained popularity on the grounds of its simplicity, informativity and relatively low 

computational cost of developed models [9]. In this type of modeling metabolic flux means 

the rate of transformation of substance in the metabolic pathway. So the rate of proceeding 

reactions is analyzed when writing the equations. Consequently, the left side of the equation 

will represent the speed of transformation of analyzed metabolite - dSi/dt, and the right side 

will summarize the rates of reactions leading to increase or decrease in its concentration. For 

example, consider the following reaction scheme: 

 

 
where: 

S1, S2, S3 – metabolites; 

𝑣1, 𝑣2, 𝑣1−3, 𝑣2−3, 𝑣3 – reaction rate; 

x – stoichiometric coefficient 

 

For the offered reactions scheme we can write the following system of equations: 

 

 
𝑑𝑆1

𝑑𝑡
= 𝑣1 −  𝑥𝑣1−3 (1) 

 

 
𝑑𝑆2

𝑑𝑡
= 𝑣2 −  𝑥𝑣2−3  
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𝑑𝑆3

𝑑𝑡
= 𝑥𝑣1−3 +  𝑥𝑣2−3 − 𝑣3  

 

To sum this approach we can write down generalized equation: 

 

 
𝑑𝑆𝑖

𝑑𝑡
= ∑𝑣𝑖𝑛_𝑖  −  ∑𝑣𝑜𝑢𝑡_𝑗 (2) 

 

where: 

𝑣𝑖𝑛_𝑖– rate of ith reaction which leads to increasing the concentration of metabolite; 

𝑣𝑜𝑢𝑡_𝑗– rate of jth reaction which leads to decreasing the concentration of metabolite. 

A number of studies [10, 11] contains one additional summand in the equation (2) – rate 

of growth µ. It is noted that cell growth leads to a slight dilution of the metabolites, but the 

study [11] emphasizes that the dilution is not significant and does not substantially affect 

model accuracy. Taking into account the growth rate, the equation (2) can be written in a 

following way: 

 

 
𝑑𝑆𝑖

𝑑𝑡
= ∑𝑣𝑖𝑛_𝑖  −  ∑𝑣𝑜𝑢𝑡_𝑗 − 𝜇𝑆𝑖 (3) 

 

Offered equations are solved in stationary conditions, which means, on the assumption 

that the system equilibrium is established [9]. In this case, the equality between fluxes leading 

to the formation of metabolite and fluxes leading to decrease in its concentration must be 

respected. Consequently, for example in the equation (3) the derivative 
𝑑𝑆𝑖

𝑑𝑡
 will be equal to 

zero and the equation itself will look like: 

 

 ∑𝑣𝑖𝑛_𝑖  − ∑𝑣𝑜𝑢𝑡_𝑗 − 𝜇𝑆𝑖 = 0 (4) 

 

For stationary conditions solution of the system of equations is performed to maximize or 

minimize one or more metabolic fluxes. For example the system of equations (1) for 

stationary state can be written as: 

 

 𝑣1 −  𝑥𝑣1−3 = 0 (5) 

 𝑣2 −  𝑥𝑣2−3 = 0  

 𝑥𝑣1−3 +  𝑥𝑣2−3 −  𝑣3 = 0  

 

The solution can be conducted to maximize the metabolic flux 𝑣3: 

 

 𝑦 =  𝑣3  → 𝑚𝑎𝑥 (6) 

 

where: y – the target function. 

The complexity of these models depends on the number of analyzed fluxes. 

Let us consider further some possible applications for the method of analysis of the 

balance of metabolic fluxes. Today the use of metabolic models has shown its effectiveness in 

the selection of potential strains, nutrient mediums, products and also in identifying ways to 

increase efficiency in the production of biofuels or pharmaceutical preparations [12–14]. 



www.manaraa.com

P. M. Gotovtsev, Ya. E. Sergeeva, A. V. Komova et al. 106 

In the study [11] the method of analysis of balance of metabolic fluxes was used to 

compute metabolic fluxes associated with biological carbon fixation. The authors compared 

six known types of fixation [11] on the criterions of maximizing the growth of biomass and 

energy efficiency. Three of them are present in phototrophic organisms: reductive pentose 

phosphate cycle (Calvin cycle), reductive citric acid cycle (Arnon cycle), 3-

hydroxypropionate cycle. Their needs of light quanta (the number of photons absorbed) was 

calculated and compared. The most effective on this parameter is Arnon cycle (11 photons), 

then goes Calvin cycle (13.9 photons), and the least effective is 3-hydroxypropionate cycle 

(15.3 photons). The number of moles of photons for each photoautotrophic pathway of carbon 

fixation was converted into the total amount of energy in kilojoules spent on fixation of СО2. 

Fixation of one mole of СО2 in Calvin cycle requires 2439 kJ, in Arnon cycle – 2401 kJ, in 3-

hydroxypropionate cycle – 3152 kJ. It is interesting that overwhelming majority of all 

primary products on the planet is made through Calvin cycle which is not the most effective. 

Three more pathways of carbon fixation work for chemotrophic organisms: reductive acetyl-

CoA pathway (the pathway of Wood–Ljungdahl), 3-hydroxypropionate/4-hydroxybutyrate 

and dicarboxylate/4-hydroxybutyrate pathways. After computing the thermodynamic 

efficiency of all six pathways of carbon fixation it has been found that three chemotrophic 

pathways (the pathway of Wood–Ljungdahl, 3-hydroxypropionate/4-hydroxybutyrate and 

dicarboxylate/4-hydroxybutyrate pathways) are more effective than photoautotrophic 

pathways (less than 1000 kJ/mole СО2). However, after inclusion to the analysis of the 

parameter of energy consumption for the generation of hydrogen from sunlight it turned out 

that energy consumption of chemotrophic pathways increases 5 times.  

The overall efficiency, calculated by dividing the heat of biomass combustion by the 

amount of energy spent on the biomass synthesis, is highest for the Arnon cycle (25.3%). 

Calvin cycle is a little less effective (24.9%). Thus, from a practical point of view (taking into 

account the spendings for hydrogen production), the most effective of the six pathways is 

Arnoncycle, the Calvin cycle is not far behind. Chemotrophic pathway of carbon fixation can 

become profitable only with the development of cheap hydrogen generation technologies. For 

the synthesis of various metabolic precursors one pathways of carbon fixation may be more 

effective than others. 

Effectiveness of researches of microorganisms’ metabolism leads to the fact that today 

there is an opportunity to simulate the maximum possible number of metabolic pathways of any 

organism. In the study [3] its authors presented the results of the work on the comprehensive 

model of the bacterium Mycoplasma genitalium. The reason for choosing this bacterium was its 

extremely small genome, which consists of only 580 070 base pairs. Also, the genome of M. 

genitalium was completely sequenced in the period from 1993 to 1995 [15]. In 2008 the results 

of successful synthesis of the genome of the bacteria were published [16].  

Before designing the model, the authors [3] have analyzed about 900 publications to 

gather information about intracellular processes of M. genitalium. This modeling was aimed 

to predict the phenotype by genotype and to try to describe the life cycle of cells, following 

changes in metabolic fluxes, as well as to try to assess the balance of metabolites at different 

periods of the cell life. In this study the metabolism was modeled by the method of balance of 

metabolic fluxes. The work [17] where the most complete metabolic map of M. genitalium 

was published, was taken as a basis for modeling. At the same time, degradation of RNA and 

proteins were modeled as a Poisson process (detailed description of the stochastic process is 

presented in [18]). In general, authors [3] developed 28 sub-models describing different 
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intracellular processes. Thus, they faced the challenge of integrating all sub-models into a 

single system. Today, these methods of integration are already under development [19–22]. 

For the integration of sub-models in this model, authors have assumed autonomy: each of the 

sub-models for a very short period of time (less than 1 second) is autonomous and 

independent from the other sub-models. During each iteration of the calculation each of the 

sub-models makes calculation based on the data received by all sub-models during the 

previous iteration.  

All the variables in the model were divided into five major groups: processes associated 

with DNA, processes associated with RNA, processes involving proteins, processes involving 

various metabolites, and others which include all the processes excluded from first four 

groups. Testing of the model was carried out according to published reports, using more than 

1,900 different parameters. For testing key parameters have been chosen, and their known 

values were compared with the simulation results. The point of testing itself was to simulate 

128 cells of the wild strain of M. genitalium. The result of testing is R2 = 0.68, considering 

analysis of cellular chemical composition, weight, and gene expression. 

In general, the developed model showed a strong correlation with real data. So, the model 

was able to predict that the material flux through glycolysis was significantly higher than 

through pentose phosphate pathway or through the biosynthesis of lipids, which corresponds 

with experimental data [23].  

One of the problems authors tried to solve by means of the developed model is prediction 

of behavior of DNA-binding proteins. Today active researches in the field of distribution of 

DNA-binding proteins [24, 25] and their diffusion dynamics [26] are being conducted. 

Relying on published data authors [3] included into their model 30 DNA-binding proteins, 

including DNA and RNA polymerases and replication initiator DNA.  

Results of model calculations show that during the first 6 minutes of the cell cycle 50% 

of the chromosome is getting connected with at least one protein, and within 20 minutes 

already 90%. The basic protein is an RNA polymerase which binds to 90% of chromosome 

during the first 49 minutes of the cell cycle. 

The model [3] was used to conduct in silico the research aimed to determine single genes, 

which significantly influence the growth of the microorganism. As a result of more than 3,000 

simulations the authors were able to determine 284 genes that are essential for cell growth. 

The comparison with the experimental data presented in [27] showed that accuracy of the 

model for this task was 79%. 

Global distribution of energy is one of most interesting problems solved with the help of 

a mathematical model of M. genitalium cells. During the simulations provided by means of 

this model authors [3] determined the dynamics of the synthesis and consumption of energy 

intermediates ATP, GTP, FAD(H2), NAD(H) and NADP(H). Among the results of these 

simulations the most interesting was the imbalance between consumption and energy 

production, which amounted to 44%. It should be mentioned that the approach to 

determination of energy balance through the balance of energy intermediates today is actively 

studied by different research groups [2]. Let us consider further the results of this study in 

details. 

In the study [2] simulation was carried out by means of method of balance of metabolic 

fluxes which was used by the authors to find the balance of intermediates ATP, GTP, 

FAD(H2), NAD(H) and NADP(H). They looked into the processes taking place in the 

microorganism Mycoplasma pneumonia, metabolism of which described sufficiently for 
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modeling [23]. The developed model includes a number of subsystems, which describe 

processes related to power production, amino acids, nucleotides, lipids and metabolism, 

including cofactors, as well as the reaction of transport. Processes of biosynthesis of DNA, 

RNA and proteins were also included into the model. The authors analyzed the literature data 

and series of experiments to determine the balance of biomass in stationary conditions. As a 

result, they took the following equation of biomass for the model: 

 

 𝐵𝑚 =  𝑀𝐷𝑁𝐴 + 𝑀𝑅𝑁𝐴 + 𝑀𝑃𝑟𝑜𝑡 + 𝑀𝑙𝑖𝑝 + 𝑀𝑏𝑠 + 𝑀𝑎𝑎 + 𝑀𝑓𝑎 + 𝑀𝑐𝑓 (7) 

 

where: 

Bm – biomass; 

MDNA, MRNA, MProt,Mlip, Mbs, Maa, Mfa, Mcf – biomass of DNA, RNA, proteins, lipids, 

bases, amino acids, fatty acids and cofactors respectively. 

 

Model testing was carried out with use of own experimental data and results of published 

researches [28, 29]. 

The first task for the developed model was simulation of biomass growth. In simulation 

the growth was carried out within 4 days on glucose with pH value ranging from 5.5 to 8.8. 

Under these conditions secretion of lactic and acetic acids was observed, as well as increase 

of copies of lactate dehydrogenase in cell from 203 to about 1,000 for the entire simulation 

period. These results are consistent with the experimental data presented in [30]. 

Analysis of energy balance of M. pneumonia in silico in the study [2] established that in 

conditions of normal growth after 36 hours the rate of ATP synthesis is about 60,000 

molecules per second. Then authors conducted a simulation of bacteria growth and compared 

the growth of biomass with consumption of energy in the form of ATP. The result detected 

significant difference between the experimental data (in particular [31]) and the model. The 

authors [2] concluded that, apparently, at the stage of culture growth there is a number of 

other reactions requiring ATP. The analysis of reactions requiring ATP in silico revealed that 

approximately 71- 88% of the available ATP is not used in processes of biomass increase. It 

was found out that after 36 hours of growth 9.8% of the total energy goes into protein 

synthesis and degradation, 8.4% into RNA synthesis and less than 0.1% into DNA synthesis. 

Lipid synthesis requires 0.5% of the available ATP molecules, 5.9% are consumed in the 

synthesis of secondary metabolites, precursor’s consumption and for other processes. These 

calculations considered information [30] concerning half-lives of proteins (23 hours) and 

mRNA (1 minute). Authors decided to use this data in order to compare the energy 

consumption of growth-related processes and processes which are not related to growth. They 

found out that even during the exponential growth the input of ATP to maintain it do not 

exceed 7%. This distribution correlates with the data presented in [3], and perhaps its analysis 

in future will allow defining the calculated 44% imbalance between the production and 

consumption of energy intermediates. 

In the forecited examples there was talk of prokaryotes, however, to date simulations 

using method of metabolic flux balance is also used for eukaryotes [32, 33]. Obviously, many 

of the models are created for the most studied microorganism – yeast Saccharomyces 

cerevisiae, genome of which has been completely sequenced by 1996 [34]. 

In the study [35] 234 reactions associated with the processes taking place in the 

mitochondria of S. cerevisiae were simulates. The modeling showed that during growth 138 



www.manaraa.com

Mathematical Modeling of Intracellular Processes 109 

reactions have zero rate, and stationary growth of mitochondria provided by the transport of 

proteins, amino acids, GDP, CDP, ions Fe2O, protoporphyrin IX and ATP from cytoplasm. 

Qualitatively, the calculations are generally match with the experimental data. 

The genome-scale metabolic model of Geobactermetallireducens consisted of 747 genes 

and 697 reactions including 118 unique reactions [36]. The central metabolism of G. 

metallireducens contained some energy-inefficient reactions. Benzoate up-regulated the genes 

for these reactions during growth on the complex electron donors for rapid energy generation. 

The metabolic model also shows similarities and differences to the model of a related species 

G. sulfurireducens.  

The study of metabolically versatile organism Rhodoferaxferrireducens included iterative 

modeling and experimental approach [37]. Some previously unknown physiological features 

such as an expanded range of substrates that support growth have been discovered, as well as 

the stoichiometry of the electron transport chain and the ability to grow via fumarate 

dismutation. The genome study showed that subsurface growth is inherent to R. ferrireducens 

due to the ability to deal with various environmental insults (heavy metals, aromatic 

compounds, nutrient limitation and oxidative stress).  

A three-dimensional reconstruction of the central metabolic network of 

Thermotogamaritima has been generated [38]. The network consisted of 478 proteins, among 

them 120 were determined by experiments and 358 were modeled. Among the proteins small 

number of basic shapes (folds) performing diverse but related functions dominated. The 

expansion of the essential core by nonessential proteins is gained with a few additional folds.  

Ralstoniaeutropha is one of the most promising biotechnological objects. The genome-

scale lithoautotrophic metabolic model of R. eutropha was created [39]. The stoichiometric 

model comprised 229 transport reactions and 1171 metabolites. The growth characteristics 

under lithoautotrophic conditions under varying gas mixtures were studied. Then the 

strategies for the production of poly-3-hydroxybutyrate under different pH values and 

carbon/nitrogen source uptake ratios were designed using themetabolic model. The targets for 

metabolic engineering essential for the production of 2-methylcitric acid in R. eutropha were 

identified using in silico gene knockout simulations. 

In the work of Montagud et al. [40] the metabolic model of a cyanobacterium 

Synechocystis sp. PCC6803 including 882 reactions (669 genes and 790 metabolites). The 

detailed biomass equation contained elementary building blocks for cell growth and detailed 

stoichiometric representation of photosynthesis. The in silico metabolic engineering 

simulations allowed to identify and assess a set of gene knock-out candidates towards 

enhanced succinate production, as well as gene essentiality and hydrogen production 

potential. Metabolic hot-spots were also found around which gene regulation was dominant 

during light-shifting growth regimes. 

The physiological group of purple nonsulfur bacteria consists of members possessing an 

extremely versatile metabolism. They can respire in the dark in the presence of oxygen, or 

grow by fermentation anaerobically on various organic substrates. In anaerobic conditions in 

the light purple nonsulfur bacteria can grow photoheterotrophically using organic substrates 

as carbon and electron source, or photoautotrophically with carbon dioxide as carbon source 

and various electron donors (elemental sulfur, thiosulfate, sulfide, hydrogen, ferrous iron) 

[41–43]. Bacteria can switch between different types of growth when the environmental 

conditions change. This ability allows them to survive and even thrive in diverse natural and 

anthropogenic ecosystems [44–48]. The modelling of the complex metabolic network of 
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purple nonsulfur bacteria is a challenge largely solved in a recent paper by Hädicke et al. [49]. 

The authors studied the central metabolism of three purple nonsulfur bacteria 

(Rhodospirillumrubrum, Rhodobactersphaeroides and Rhodopseudomonaspalustris) and 

made its stoichiometric model. Different environmental scenarios were studied then with the 

help of the flux variability analysis: photoautotrophic growth with hydrogen as electron 

donor, photoheterotrophic growth on different substrates and the role of Calvin cycle in this 

process, photoheterotrophic acetate metabolism (which is different in all three species 

studied), aerobic and anaerobic growth in darkness. The authors showed that biomass yield 

and CO2 release could be calculated for a certain substrate and catabolic pathway. It 

correlated well with the experimental data. The role of Calvin cycle and other pathways in 

photoheterotrophic growth were discussed. The metabolic pathway model constructed by the 

authors allowed to interpret the experimental biological data and to understand better the 

global redox balancing mechanisms in purple nonsulfur bacteria. Moreover, the model gives 

the opportunity to design in silico new genetically engineered bacterial strains capable of 

biohydrogen, biopolymers, porphyrine production. 

Thus, the forecited review shows that today the method of analysis of the balance of 

metabolic fluxes found an extensive use and allows getting adequate predictions on the results 

of the simulation. At the same time, this method has several drawbacks, in particular it gives 

opportunity to analyze only the steady metabolic flux distribution and does not take into 

account such factors as transportation, diffusion processes in cytoplasm, and others. And 

lastly, the stationarity of method prevents from effective analyze of dynamics of intracellular 

processes. 

Models Based on Petri Nets 

The method based on Petri nets is also widespread in the modeling of intracellular 

processes [6, 7]. Let us begin the review of models with short brief of these nets and 

principles they are based on. 

Petri net is a set of mathematical procedures made for the simulation of dynamic systems 

[50–52]. In fact the net is a bipartite directed graph, where there are two types of points – 

positions and transitions. Positions are passive net elements, and in modeling of intracellular 

processes it can be certain factors, condition or chemical mixtures. Transitions respectively 

are active elements of the system - like, certain events and actions, such as chemical 

reactions. Points are connected to each other via arcs which represent interrelation between 

the active and passive elements. In fact the arcs describe which reactants transform into 

products due to a chemical reaction. It is also possible to assign to arc a multiplicand which 

will make allowance for stoichiometry of the modeled reaction. Shifts of material balance 

which become a result of reactions and transportation are modeled using tokens that move 

from one node to another in the direction of the process. All relocations of tokens are made in 

a way so their number in any given point characterizes the state of the system at a certain 

time. Thus, the work of Petri net in effect is relocation of tokens through the nodes. Where in 

following conditions are satisfied: 
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1. Moving of token is possible only if all the previous nodes are filled, so at least a 

stoichiometric amount of reactants is available for the reaction and arc factor is taken 

into consideration; 

2. During operation all the tokens move from the basic (input) to the output points 

according to the multiplicands; 

3. All events in net (token passing) occur automatically or in accordance with selected 

timeline.  

 

Let us examine the same reaction we described for the method of analysis of metabolic 

fluxes balance and create a simple Petri net, that will describe it. 

 

 𝑆1 + 𝑆2 → 𝑥𝑆3 (8) 

 

For the sake of simplicity, let us assume that stoichiometric coefficient x is 3. Figure 1 

represents the initial state of the net and the result of the reaction. In the initial state (the left 

part of the Figure) there are two moles of substance S1 and one of S2, in the Figure they are 

marked with black dots in the objects S1 and S2. The right part of the Figure shows the result 

of reaction: three moles of substance S3 and one of S1, which didn’t enter the reaction as 

stoichiometric odd. In this example S1, S2 and S3 are the positions and r is transition. 

 

 

Figure 1. Petri net functioning, which describe the reaction 8. 

As is seen from the description, the models based on Petri nets are not strictly formal 

reflection (or even approximation to it) of intercellular processes. The principles of net 

functioning are adaptive enough to create a rough analogue of modeled processes on the 

ground of already developed set of rules. As the work of this analogue is based on known set 

of rules, it can be successfully used for the analysis of the simulated process. That’s why Petri 

nets are actively used nowadays for modeling of intracellular processes [6]. Next we will 

consider some successful examples of their application. 

Let us begin with the work [53] in which the authors constructed a model based on Petri 

nets for modeling of such a complex phenomenon as apoptosis. This phenomenon stirs a 

significant scientific interest [54, 55]. Cell apoptosis is a subject of numerous studies [55–58]. 

In their model, authors [53] have tried to reflect two most-studied signaling pathways [56] – 

receptor-dependent and mitochondrial. Authors did not include inhibitors of apoptosis to the 

model as in their opinion, the influence of these substances is external to the simulated 

process and so they can be neglected not to complicate the model. Adding of inhibitors’ 

influence is also possible by making changes in original data of the model. In developing the 

model, its authors took into account the intersection of two signaling pathways through a 

regulatory protein Bid. For purposes of accounting of enzymes involvement in reactions 
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authors implemented test arcs which doesn't suppose the reduction of number of enzyme 

molecules catalyzing the reaction. Input signals generate tokens at initial positions and they 

cut in the net in accordance with the set of rules. At the ending positions tokens are absorbed 

and removed from the net as the output signals. 

Verification of model was carried out by analyzing the transitions resulting in changes in 

the amount of substance during the reaction [53]. In case of model inadequacy inadequate 

growth or reduction of the amount of substance can be shown, or the model will demonstrate 

the cyclical behavior. When authors introduced to the model various combinations of basic 

data, they received one of described in literature apoptosis signaling pathways, and so they 

didn’t get variants with in-progress job of net, with impossible signaling pathways or endless 

accumulation of the substances. Thus the authors' analysis with different input signals showed 

that model adequately describes the given signaling pathways of apoptosis. 

An important advantage of Petri nets is accountability of temporal factors. They can be 

accounted after extending the set rules that govern the token movements or after adding new 

positions, which would carry out the calculation using those or other systems of equations. An 

example of such a hybrid Petri net is described in a study [59]. Its authors modeled the signal 

circuit of dopamine and used it for analyzing delays and noise in the circuit. Another interesting 

example is presented in work [60], where the authors introduced the stochastic set of rules to 

account the temporal factor of signaling pathway of interleukin 1. This method helped to define 

limitative steps of this signaling pathway, which are much slower than others and so have a 

significant influence on the entire signal way. 

As you can see from the above examples Petri nets are sufficiently flexible and 

interesting method of modeling of intracellular processes. However, this modeling method is 

a system of mathematical rules, which is not an explicit reflection of simulated processes and 

carries a substantial degree of conditionality. Thus, this method has lower capabilities in the 

matter of gaining of new information about the object in comparison with the method of 

metabolic fluxes balance. At the same time in modeling using Petri nets set of rules can be 

significantly expanded what is successfully shown in works [59, 60]. Complication of factors 

and positions also looks like a promising trend in application of this type of modeling. For 

example, the introduction of positions with inscribed formulas calculates given process with 

more accuracy than modeling with set of net rules. It is quite easy to integrate into such a nets 

degradation of proteins and RNA, model them, for example, by analogy with [3] as a Poisson 

process. In general we can conclude that Petri nets due to their flexibility are very interesting 

tool for modeling the intracellular processes. 

Thermodynamics of Systems Far from Equilibrium and Some Aspects of Its 

Application in Modeling of Intracellular Processes 

Thermodynamics of chemical reactions with fluctuations in concentrations today became a 

point of interest as a theoretical basis for description of various biochemical systems [61, 62]. 

The theoretical possibility of chemical reactions and diffusion, resulting in spontaneous 

evolving of the system into spatially-nonhomogeneous structures was originally demonstrated 

by Alan Turing [63]. The basic equation for reaction with regard for diffusion can be written as: 
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𝜕𝑢

𝜕𝑡
= 𝐷∇2𝑢 + 𝑓(𝑢, 𝑝) (9) 

 

where:  

u – vector of concentrations of substances involved in the process; 

D – matrix of diffusion coefficients; 

p – parameters describing the kinetics of the process. 

 

Function 𝑓(𝑢, 𝑝) characterizes the system under study. Kinetic equations of ongoing 

reactions serve as the description. A classic example [64] of such a description is the 

following system of reactions: 

 

 𝑋 ↔ 𝐴 (10) 

 2𝑋 + 𝑌 → 3𝑋  

 𝐵 → 𝑌  

 

For the system (10) this type of equations (9) will look like [63]: 

 

 
𝜕𝑢1

𝜕𝑡
= 𝐷1∇2𝑢1 + 𝑘2𝑎 − 𝑘1𝑢1 + 𝑘3𝑢1

2𝑢2 (11) 

 
𝜕𝑢2

𝜕𝑡
= 𝐷2∇2𝑢2 + 𝑘4𝑏 − 𝑘3𝑢1

2𝑢2  

 

where: 

u1, u2, a и b – concentrations of X, Y, A, B respectively; 

k1…k4 – kinetic constant. 

 

Obviously, if 𝑓(𝑢, 𝑝) = 0, the steady state is observed in the system. Turing in his work 

[63] has shown that for certain values of the kinetic parameters and diffusion coefficients 

such a stationary state can pass into unstable, and in case of diffusion, can evolve in a 

spatially inhomogeneous structure. This effect is observed if one of the parameters is 

subjected to bifurcation. 

Belousov was the first who observed a chemical reaction with auto-oscillations. His work 

was published in 1959 [65]. In this work Belousov tried to find an analogue of the Krebs 

cycle in the non-living systems. Then this reaction has been studied by Zhabotinsky. The 

results [66, 67] caused considerable interest, both from the point of view of studying the auto-

oscillatory processes in chemistry, and also concerning the possibility to get mathematical 

description of autowave processes. Starting out from the Belousov-Zhabotinsky reaction, by 

now was discovered a big number of autowave chemical reactions. Among these systems we 

can mention: 

 

 Briggs-Rauscher reaction [68];  

 PA-MBO - polyacrylamide–Methylene Blue–sulfide–oxygen system [69]; 

 FIS - hexacyanoferrate(II)–iodate–sulfite reaction [70, 71]; 

 CIMA - chlorite–iodide–malonic acid–starch reaction [72]. 
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Detailed description of theoretical questions concerning autowave chemical reactions is 

presented in studies [9, 73, 74].  

In this article we will take a closer look only on certain issues related to the autowave 

processes that are more interesting from the point of view of possible application in modeling 

of intracellular processes. 

CIMA reaction is so appealing because in a great measure it reflects the results of 

calculations Turing introduced in his work [63]. For this reaction a mathematical model [75–

76] was developed. The fundamental principles of this model we will consider below. It is 

based on the following reactions: 

 

 MA + I2 → IMA + I- + H+ (12) 

 

 ClO2 + I- → ClO2
- + ½ I2  

 

 ClO2
- + 4I- + 4H+ → Cl- + 2I2 + 2H2O  

 

MA – malonic acid. 

Reaction rates are determined according to the following equations: 

 

 𝑟1 =
𝑘1[𝑀𝐴][𝐼2]

𝑤1+[𝐼2]
 (13) 

 𝑟2 = 𝑘2[𝐶𝑙𝑂2][𝐼−]  

 𝑟3 = 𝑘3𝑎[𝐶𝑙𝑂2
−][𝐼−][𝐻+] + 𝑘3𝑏

[𝐶𝑙𝑂2
−][𝐼2][𝐼−]

𝑤3+[𝐼−]2   

 

where: 

k1, k2, k3a, k3b, w1, w3 – constants. 

 

The main difficulty in modeling of the system is to determine the diffusion coefficients. 

The authors [77] assumed that iodide – gel or starch reaction may be applied to reduce the 

rate of diffusion of the activating reaction substance. Basing on this effect we can get the 

diffusion coefficients which lead to formation of Turing structures as a result of CIMA 

reaction. In this case, the model will look like: 

 

 
𝜕𝑢1

𝜕𝑡
= 𝑘1 − 𝑢 −

4𝑢1𝑢2

1+𝑢1
2 + ∇2𝑢1 (14) 

 
𝜕𝑢1

𝜕𝑡
= 𝑘1 [𝑘3 (𝑢1 −

𝑢1𝑢2

1+𝑢1
2) + c∇2𝑢2]  

 

Computational modelings showed the formation of Turing structures in the system. 

The key parameter in development of such models is diffusion coefficients [61]. In study 

[78] presented an approach to determining of these coefficients. Let us consider it by the 

example of a simple reaction (description by [61, 78]) 

 

 𝑈 + 𝑆 ↔ 𝐶 (15) 

 



www.manaraa.com

Mathematical Modeling of Intracellular Processes 115 

After writing down the equation (9) for each of the substances we get the following 

system: 

 

 
𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝑣) − 𝑟1𝑢𝑠 + 𝑟2𝑐 + 𝐷𝑢∇2𝑢 (16) 

 
𝜕𝑣

𝜕𝑡
= 𝑔(𝑢, 𝑣) + 𝐷𝑢∇2𝑣  

 
𝜕𝑐

𝜕𝑡
= 𝑟1𝑢𝑠 − 𝑟2𝑐  

 

where: 

u, s и c – concentrations of U, S и C respectively; 

𝑟1– on-rate; 

𝑟2– off-rate. 

 

In case the reaction rates are high, the analysis of system (16) can show the S 

concentration is close to initial. 

Addition of the first and third equations in the system (16) derives the equation for 

concentration of u: 

 

 (1 + 𝑟)
𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝑣) + 𝐷𝑢∇2𝑢 (17) 

 

where 𝑟 = 𝑠0
𝑟1

𝑟2
, 𝑠0 – initial concentration of the substance s. 

Thus if 𝑟 is much greater than unity, diffusion of substance U significantly reduced. 

This approach to modeling of chemical systems has been used in work [79] to simulate 

the process of glycolysis. Later have appeared modifications of this model [80–82] which 

altogether resolve into following equations: 

 

 𝑓1(𝑢1, 𝑢2) = 𝑢1 − 𝑢1𝑢2
2 + 𝑘1(1 − 𝑢1) (18) 

 𝑓1(𝑢1, 𝑢2) = 𝑢2 + 𝑢1𝑢2
2 − (𝑘1 + 𝑘2)𝑢2  

 

The results of computational simulations performed by means of this model [83], have 

shown a correlation with experimental data acquired subsequently [70]. 

Model of bifurcation has been applied for the analysis of epigenetic regulation [84]. 

Model developed by the authors may help to clarify the mechanisms of epigenetic regulation 

in the process of the cell evolvement. 

In study [85], its authors dispersed the reaction mixture for the Belousov-Zhabotinsky 

reaction in oil droplets and thus got a kind of “chemical cages”, which demonstrated that 

reaction-diffusion process leads to a chemical differentiation. This differentiation in its turn 

led to physical morphogenesis. Authors observed five of the six structures predicted by 

Turing in his work [63], and as well, in the two-dimensional hexagonal arrays seven 

previously undescribed structures were detected. It was demonstrated that the addition into 

Turing theory of some factors related to the heterogeneity of proceeding processes helps to 

explain these new structures. 

From this review we can conclude that today there are some methods of modeling of 

auto-oscillating and non-equilibrium processes. It is obvious that by far we don’t have enough 
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experimental data for a wide use of this approach for intracellular processes modeling. 

However, now it is already possible to rely on this method in the analysis of some processes 

and include received systems of equations in the general model. 

Modularity in Metabolic Processes and Signaling Pathways 

Analysis of dynamic characteristics of metabolic and signaling pathways is another 

interesting approach to modeling of intracellular processes. It also supposes division into 

modules, but it is carried out by means of unification of groups of metabolic reactions 

according to their pathways [86–88] and not on basis of additional rules. It is obvious that 

with such modularity significant attention should be paid to the possible impact of the next 

modules in metabolic pathway on the previous ones and on cycles as well. Under this 

approach this processes are considered as feedback, and simulation is performed in much the 

same way as in the electronic circuits or in control systems [88, 89]. This method gives a 

good mathematical tool for gene engineering projects, as it provides an opportunity to analyze 

the effectiveness of changes made to genome taking into account the rate of various processes 

[90]. For example, this approach offers possibility to analyze the combination of relatively 

slow processes (such as gene expression) with fast ones (as transmission of signals in the 

signal paths) [90]. 

In order to confirm the applicability of this method to the intracellular process authors of 

the work [90] created four recombinant strains of S. cerevisiae. In each of them were 

represented different pathways of synthesis of green fluorescent protein GFP. Some strains 

had implemented circuits comprising feedback, others had not. For all the strains the signal to 

start synthesis was the presence of doxycycline in substrate. Control of synthesis of GFP 

protein gave opportunity to monitor proceeding metabolic pathway and to describe it 

mathematically by means of analysis of the curves of varying amount of GFP [84]. 

Discussion 

The results of studies provided by different research groups show that by far we don’t 

have enough data for compilation of mathematical model, which would involve all known 

intracellular processes for any microorganism or cell culture. Therefore authors of models 

have to make a set of assumptions, such as ignoring transportation or using stochastic 

approach. At the same time, today we can find enough works on modeling the properties of 

various biomolecules in different solutions (for example, [91]), and works on formalized 

physical description of specific processes, such as functioning of certain enzymes or 

complexes, also exist. Thus, in [92] quite detailed description of the process of photosynthesis 

is presented. By far modeling of intracellular processes goes in two lines: general processes 

and their subsequent clarification, and functioning of specific systems or even reactions with 

further compilation. Both approaches are schematically illustrated in Figure 2 made by 

analogy with “pyramid of the complexity of the living” presented in [93]. 

Obviously, both of the approaches described above in the long run will lead to creation of 

a complete model of microorganism or animal cell which will include even physicochemical 

processes associated with specific reactions and biomolecules, comprising conformational 
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changes. However, information we have today is not enough to create these models, 

nevertheless approaches for integration of various elements and sub-models into an integrated 

complex already exist. 

 

 

Figure 2. The main approaches to mathematical modeling of intracellular processes. 

The first way has already been presented in work [3] where the whole model is made up of 

sub-models, each of which is responsible for its own process group. Thus, authors divided all 

processes into the groups by their functionality. Assuming the autonomy of sub-models, this 

approach gives an opportunity to combine different methods of modeling in each of the sub-

models. In this case, an important task is to provide data exchange between the sub-models as it 

may occur, for example, that one sub-model will return results in quantitative terms (e.g., 

concentrations) and the other will be represented by Petri net and it will work with tokens which 

are converted into physical quantities in accordance with built-in set of rules. 

Another approach is the spatial separation of processes, when each sub-model simulates 

specific system localized in space. Localization can be not strict in physical dimension, but, 

for example, attached to a specific organelle. With this method appears a problem of verifying 

the material flows between sub-models, but these flows are, in fact, a source of information of 

the intracellular transport. Creation of such a model is obviously a very difficult task, 

considering available information about intracellular processes and volumes of contained 

substances [94, 95]. On the other hand, after localization of sub-models in spatial system, 

spatial effects and their role in metabolism can be simulated. 

To continue with this idea we can mention that in models divided into sub-model on the 

principle of the spatial localization further division into the estimated elements of sub-models 

on the principle of functionality is also theoretically possible.  

The problem of uncertainty of modeled system leads to the analysis of possible use of 

external algorithms, which in any way would provide quantitative assessment of uncertain 

processes. Such an approximation will surely reduce the accuracy of the model. Use of 
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Poisson process as a model of RNA and proteins degradation described in work [3] can be an 

example of this approach. To date, there is no lack in algorithmic methods of dealing with 

complex data that are difficult to formalize, as in case there are experimental data only in a 

small part of the theoretically possible value. As an example we may cite artificial neural 

networks, which are actively used for so-called black-box modeling [96]. Black-box 

modeling is type of simulation where modeled system is represented as a black box and the 

goal is to define correlation between system output and input parameters through a variety of 

mathematical methods. 

Apart from spatial effects an important model element is time tracking. For models 

similar to [3] tracking is conducted with reference to the known reaction rates. When using 

Petri nets track of time can be carried out, for example, in the following ways: by updating 

the set of rules, by artificial accelerating or slowing down movement of tokens along the arcs, 

or by implementing additional positions that would restrain tokens. 

As mentioned earlier, the set of rules that governs model functioning is an integral part of 

Petri nets. But if the model contains several sub-models, there is a need to develop a set of rules 

for their interaction. Assumption of autonomy applied in [3] is quite effective if sub-model have 

been selected only by criterion of functionality. But it may be not effective enough in case of 

use of black-box as any of sub-models or in case of a spatial decomposition. The fact is that in a 

spatial decomposition each of sub-models may comprise component responsible for the material 

flow of matter from one sub-model to neighboring, which in turn causes a procedure for 

computing in the direction of the material flow motion. Thus, more serious system which will 

regulate functioning of various sub-models may be necessary. 

Apart from approaches mentioned above solutions based on results of study of mass-

tranfer in microstreams and nanostreams may appear. Today, this area of hydrodynamics is 

actively developing, and among recent publications [53, 54] should be mentioned. In first one 

the authors analyze the flow of binary fluids through a number of microcylinders located at a 

certain angle to the flow. By means of computer simulation, authors determine the parameters 

of such a system of microcylinders where it would be possible to separate components from 

their mixture. In work [54], authors are exploring such an interesting phenomenon as 

thermodiffusion. Research is also conducted by means of computer modeling. In the future, 

these works can help in the study of intracellular traffic of substances, and that of course will 

be reflected in the mathematical models of intracellular processes. 

Conclusion 

Development of mathematical models gives opportunity to simulate various types of 

experiments and choose those of them which have shown high-quality results for further 

experimental work. At the same time the process of modeling itself helps to organize and 

structure the definite volume of data and show the direction for further experimentations. 

As is seen from above review, questions of modeling of intracellular processes are highly 

relevant nowadays. On the one hand, enough information about these processes has been 

accumulated in order to get an adequate model. On the other hand a lot of things still remain 

unknown, what makes possible using of the models as a tool in the research process. Growth in 

the number of works and the diversity of approaches to modeling in recent years only confirms 

foregoing thesis. 
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Consideration of contemporary models and approaches to modeling shows that today 

there is a need for implementation to the model of issues related to the intracellular substance 

transport. Currently we don't have enough data for complete mathematical description of 

these processes. However, in some cases, certain elements and approaches already can be 

used. For example, the work on non-equilibrium thermodynamics and dissipative systems is 

extremely interesting as a tool for modeling of systems of metabolic reactions in respect of 

diffusion processes. 

In general we can expect that the concept of mathematical modeling of intracellular 

processes will bourgeon rapidly in the near future and we can expect new interesting models 

of both individual reacting systems and entire cells. 
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